

Mark Scheme (Results)

January 2022

Pearson Edexcel International Advanced Subsidiary Level In Physics (WPH13) Paper 01 Practical Skills in Physics I

Number		
1(a)	 Measure length of card Or use a card of known length Velocity = length of card / time taken 	2
1(b)(i)	 Mean v = 1.98 (m s⁻¹) Use of half range Or use of maximum difference from the mean %U = 7 % rounded to 1 or 2 s.f. (1) 	3
	• %U = 7 % rounded to 1 or 2 s.f. Example Calculation Mean $v = (2.07 + 1.84 + 1.91 + 2.10) / 4 = 1.98 \text{ m s}^{-1}$ $U = (2.10 - 1.84) / 2 = 0.13 \text{ m s}^{-1}$ %U = $(0.13 / 1.98) \times 100 = 6.6 \%$	J
1(b)(ii)	• Use of $v^2 = u^2 + 2as$ • $a = 1.31 \text{ (m s}^{-2)}$ (1) Allow ecf for v from (b)(i) $\frac{\text{Example Calculation}}{1.98^2 = 0^2 + (2 \times a \times 1.50)}$ $a = 1.98^2 / (2 \times 1.50)$ $a = 1.31 \text{ m s}^{-2}$	2
1(b)(iii)	• The second student carried out the same experiment (1)	1
	Total for question 1	8

Mark

Question Answer

Question	Answer				
Number					
2(a)	• Circuit with a means of varying the p.d. across the bulb	(1)			
	(e.g., variable resistor, variable power supply)				
	• Ammeter connected in series and voltmeter connect in parallel with the bulb	(1)	2		
2(b)	• Calculate power using $P = VI$	(1)			
	Repeat experiment and calculate mean	(1)			
	Vary p.d. to obtain at least five sets of data	(1)			
	Describes method to control background light				
	Or describes controlling distance from LDR to light source	(1)	4		
2(c)	Resistance is negligible (compared to resistance of LDR)	(1)	1		
	Total for question 2				

Question Number	Answer		
3(a)	 Measure two of sides AB, BC or AC Calculate θ using: θ = sin⁻¹ (BC / AB) Or θ = cos⁻¹ (AC / AB) Or θ = tan⁻¹ (BC / AC) 	(1)	2
3(b)	Measure the distance to the floor in two places using the metre rule Or place a spirit level along the bracket Or place a set square between the wall and the bracket Or place a protractor along the wall at the hinge Or correct description of applying Pythagoras theorem to the 3 measured lengths	(1)	1
3(c)	 Original/repeat measurements are not recorded Inconsistent significant figures for F x only recorded to nearest cm 	(1) (1) (1)	3
3(d)(i)	 Intercept value between 0.7 and 0.9 N Use of y-axis intercept = W/2sinθ W value between 0.9 and 1.2 N 	(1) (1) (1)	3
	Example Calculation $0.8 \text{ N} = \frac{W}{2sin42^{\circ}}$ $W = 1.1 \text{ N}$		
3(d)(ii)	 Percentage difference = 1.7% Percentage difference is small, so method is accurate [MP2 dependent on MP1] 	(1) (1)	2
	Example Calculation Percentage difference = $\frac{(9.81 - 9.64)}{9.81} \times 100\%$ Percentage difference = 1.7 %		
	Total for question 3		11

Question Number	Answer				Mark
4(a)(i)	 Correct 1/w values rounded to 2 s.f. Labels axes with quantities and units Sensible scales Plotting Line of best fit 				6
	w/ mm	<i>R /</i> ΜΩ	1/w / m ⁻¹	40	
	14	33.6	71	40	
	18	26.1	56	35	
	26	17.2	38	30	
	37	13.3	27	25	
	53	8.7	19		
				CI 20	
				15	
				10	
				×	
				5	
				0 10 20 30 40 50 60 70 80	
				$1/w / m^{-1}$	
4(a)(ii)		_	_	large triangle (1)	
		f gradient e between		-0.87 mm (1)	3
		= 28.5 × 10	$0^6 \Omega / 60 \mathrm{m}$	$n^{-1} = 4.75 \times 10^5 \Omega \text{ m}$	
4(b)(i)				$0.75 \times 10^5 \Omega \text{ m} = 8.42 \times 10^{-4} \text{ m}$ ution so low uncertainty	
-(~)(-)				lution of 0.01 mm so low uncertainty (1)	
	Percent	ntage unce	ertainty is	reduced by measuring several thicknesses together	
			inty of the ertainty is 1	measurement is divided by the number of slices, so reduced (1)	2
4(b)(;;)					
4(b)(ii)				2% uncertainty for stated value of t (1) s above upper limit, so results not consistent (1)	
					2
	Allow ecf for t from (a)(ii), Accept calculation and comparison with the lower limit (0.78) if $t < 0.80$ mm				
	Example Calculation				
	Upper limit = $0.80 \times 1.02 = 0.82 \text{ mm}$ 0.85 mm > 0.82 mm				
		question			13

Question Number	Answer		Mark
5(a)(i)	 Use of t = N × time per division Use of s = ut 	1) 1) 1) 1)	4
5(a)(ii)	 Use of time per division to calculate maximum time that could be shown on the oscilloscope screen Or use of screen width to calculate time per division required to show both peaks on the oscilloscope screen Or use of time per division to calculate how many divisions would be required to show both peaks on the oscilloscope screen Concludes that time displayed on the screen would be too short 	(1) (1)	3
5(b)	• It would be more difficult to judge the position/time of the peaks, so time	(1)	2
5(c)	So, the Young modulus is the more significant source of uncertainty (allow a conclusion consistent with comparison using incorrectly calculated %U _E) Example of Calculation %U _E = (0.5 GPa / 11.2 GPa) × 100 = 4.46% 4% > 3%	1)	2
	Total for question 5		11